406 research outputs found

    Aversive Stimuli Drive Drug Seeking in a State of Low Dopamine Tone

    Get PDF
    Background Stressors negatively impact emotional state and drive drug seeking, in part, by modulating the activity of the mesolimbic dopamine system. Unfortunately, the rapid regulation of dopamine signaling by the aversive stimuli that cause drug seeking is not well characterized. In a series of experiments, we scrutinized the subsecond regulation of dopamine signaling by the aversive stimulus, quinine, and tested its ability to cause cocaine seeking. Additionally, we examined the midbrain regulation of both dopamine signaling and cocaine seeking by the stress-sensitive peptide, corticotropin releasing factor (CRF). Methods Combining fast-scan cyclic voltammetry with behavioral pharmacology, we examined the effect of intraoral quinine administration on nucleus accumbens dopamine signaling and hedonic expression in 21 male Sprague-Dawley rats. We tested the role of CRF in modulating aversion-induced changes in dopamine concentration and cocaine seeking by bilaterally infusing the CRF antagonist, CP-376395, into the ventral tegmental area (VTA). Results We found that quinine rapidly reduced dopamine signaling on two distinct time scales. We determined that CRF acted in the VTA to mediate this reduction on only one of these time scales. Further, we found that the reduction of dopamine tone and quinine-induced cocaine seeking were eliminated by blocking the actions of CRF in the VTA during the experience of the aversive stimulus. Conclusions These data demonstrate that stress-induced drug seeking can occur in a terminal environment of low dopamine tone that is dependent on a CRF-induced decrease in midbrain dopamine activity

    A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 13 (2016): 5697-5717, doi:10.5194/bg-13-5697-2016.Cobalt is a nutrient to phytoplankton, but knowledge about its biogeochemical cycling is limited, especially in the Pacific Ocean. Here, we report sections of dissolved cobalt and labile dissolved cobalt from the US GEOTRACES GP16 transect in the South Pacific. The cobalt distribution is closely tied to the extent and intensity of the oxygen minimum zone in the eastern South Pacific with highest concentrations measured at the oxycline near the Peru margin. Below 200 m, remineralization and circulation produce an inverse relationship between cobalt and dissolved oxygen that extends throughout the basin. Within the oxygen minimum zone, elevated concentrations of labile cobalt are generated by input from coastal sources and reduced scavenging at low O2. As these high cobalt waters are upwelled and advected offshore, phytoplankton export returns cobalt to low-oxygen water masses underneath. West of the Peru upwelling region, dissolved cobalt is less than 10 pM in the euphotic zone and strongly bound by organic ligands. Because the cobalt nutricline within the South Pacific gyre is deeper than in oligotrophic regions in the North and South Atlantic, cobalt involved in sustaining phytoplankton productivity in the gyre is heavily recycled and ultimately arrives from lateral transport of upwelled waters from the eastern margin. In contrast to large coastal inputs, atmospheric deposition and hydrothermal vents along the East Pacific Rise appear to be minor sources of cobalt. Overall, these results demonstrate that oxygen biogeochemistry exerts a strong influence on cobalt cycling.This work was funded by NSF awards OCE-1233733 to MAS, OCE-1232814 to BST, and OCE-1237011 to JAR

    Elevated Trace Metal Content of Prokaryotic Communities Associated with Marine Oxygen Deficient Zones

    Get PDF
    Little is known about the trace metal content of marine prokaryotes, in part due to their co-occurrence with more abundant particulate phases in the upper ocean, such as phytoplankton and biogenic detritus, lithogenic minerals, and authigenic Mn and Fe oxyhydroxides. We attempt to isolate these biomass signals in particulate data from the US GEOTRACES Eastern Pacific Zonal Transect (cruise GP16) in the Eastern Tropical South Pacific (ETSP), which exhibited consistent maxima in P and other bioactive trace metals, and minima in particulate Mn, in the oxygen deficient zones (ODZs) of 13 stations. Nitrite maxima and nitrate deficits indicated the presence of denitrifying prokaryotic biomass within ETSP ODZs, and deep secondary fluorescence maxima at the upper ODZ boundaries of 10 stations also suggested the presence of low-light, autotrophic communities. ODZs were observed as far west as 99 degrees W, more than 2300 km from the South American coast, where eolian lithogenic and lateral/resuspended sedimentary inputs were negligible, presenting a unique opportunity to examine prokaryotic metal stoichiometries. ODZ particulate P maxima can rival gyre mixed layer biomass concentrations, are highly sensitive to oxygen, and are in excess of amounts scavengable by local Fe oxyhydroxides and acid-volatile sulfides. Even after correction for lithogenic and ferruginous-scavenged metals, ODZ P-maxima are often enriched in Cd, Co, Cu, Ni, V, and Zn, exhibiting particulate trace metal ratios to P that exceed mixed layer biomass ratios by factors of 2-9. ODZ prokaryotic communities may be largely hidden, TM-rich pools involved in the marine cycles of these bioactive trace metals

    The acceleration of dissolved cobalt's ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 14 (2017): 4637-4662, doi:10.5194/bg-14-4637-2017.The stoichiometry of biological components and their influence on dissolved distributions have long been of interest in the study of the oceans. Cobalt has the smallest oceanic inventory of inorganic micronutrients and hence is particularly vulnerable to influence by internal oceanic processes including euphotic zone uptake, remineralization, and scavenging. Here we observe not only large variations in dCo : P stoichiometry but also the acceleration of those dCo : P ratios in the upper water column in response to several environmental processes. The ecological stoichiometry of total dissolved cobalt (dCo) was examined using data from a US North Atlantic GEOTRACES transect and from a zonal South Atlantic GEOTRACES-compliant transect (GA03/3_e and GAc01) by Redfieldian analysis of its statistical relationships with the macronutrient phosphate. Trends in the dissolved cobalt to phosphate (dCo : P) stoichiometric relationships were evident in the basin-scale vertical structure of cobalt, with positive dCo : P slopes in the euphotic zone and negative slopes found in the ocean interior and in coastal environments. The euphotic positive slopes were often found to accelerate towards the surface and this was interpreted as being due to the combined influence of depleted phosphate, phosphorus-sparing (conserving) mechanisms, increased alkaline phosphatase metalloenzyme production (a zinc or perhaps cobalt enzyme), and biochemical substitution of Co for depleted Zn. Consistent with this, dissolved Zn (dZn) was found to be drawn down to only 2-fold more than dCo, despite being more than 18-fold more abundant in the ocean interior. Particulate cobalt concentrations increased in abundance from the base of the euphotic zone to become  ∼  10 % of the overall cobalt inventory in the upper euphotic zone with high stoichiometric values of  ∼  400 µmol Co mol−1 P. Metaproteomic results from the Bermuda Atlantic Time-series Study (BATS) station found cyanobacterial isoforms of the alkaline phosphatase enzyme to be prevalent in the upper water column, as well as a sulfolipid biosynthesis protein indicative of P sparing. The negative dCo : P relationships in the ocean interior became increasingly vertical with depth, and were consistent with the sum of scavenging and remineralization processes (as shown by their dCo : P vector sums). Attenuation of the remineralization with depth resulted in the increasingly vertical dCo : P relationships. Analysis of particulate Co with particulate Mn and particulate phosphate also showed positive linear relationships below the euphotic zone, consistent with the presence and increased relative influence of Mn oxide particles involved in scavenging. Visualization of dCo : P slopes across an ocean section revealed hotspots of scavenging and remineralization, such as at the hydrothermal vents and below the oxygen minimum zone (OMZ) region, respectively, while that of an estimate of Co* illustrated stoichiometrically depleted values in the mesopelagic and deep ocean due to scavenging. This study provides insights into the coupling between the dissolved and particulate phase that ultimately creates Redfield stoichiometric ratios, demonstrating that the coupling is not an instantaneous process and is influenced by the element inventory and rate of exchange between phases. Cobalt's small water column inventory and the influence of external factors on its biotic stoichiometry can erode its limited inertia and result in an acceleration of the dissolved stoichiometry towards that of the particulate phase in the upper euphotic zone. As human use of cobalt grows exponentially with widespread adoption of lithium ion batteries, there is a potential to affect the limited biogeochemical inertia of cobalt and its resultant ecology in the oceanic euphotic zone.This work was funded by the National Science Foundation as part of the US GEOTRACES North Atlantic Zonal Transect program under grants OCE-0928414 and OCE-1435056 (to Mak A. Saito), OCE-0928289 (to Benjamin S. Twining), OCE-0963026 (to Phoebe Lam) and support from the Gordon and Betty Moore Foundation (3782 to Mak A. Saito)

    Biotic and abiotic retention, recycling and remineralization of metals in the ocean

    Get PDF
    Trace metals shape both the biogeochemical functioning and biological structure of oceanic provinces. Trace metal biogeochemistry has primarily focused on modes of external supply of metals from aeolian, hydrothermal, sedimentary and other sources. However, metals also undergo internal transformations such as abiotic and biotic retention, recycling and remineralization. The role of these internal transformations in metal biogeochemical cycling is now coming into focus. First, the retention of metals by biota in the surface ocean for days, weeks or months depends on taxon-specific metal requirements of phytoplankton, and on their ultimate fate: that is, viral lysis, senescence, grazing and/or export to depth. Rapid recycling of metals in the surface ocean can extend seasonal productivity by maintaining higher levels of metal bioavailability compared to the influence of external metal input alone. As metal-containing organic particles are exported from the surface ocean, different metals exhibit distinct patterns of remineralization with depth. These patterns are mediated by a wide range of physicochemical and microbial processes such as the ability of particles to sorb metals, and are influenced by the mineral and organic characteristics of sinking particles. We conclude that internal metal transformations play an essential role in controlling metal bioavailability, phytoplankton distributions and the subsurface resupply of metals

    Atmospheric Input and Seasonal Inventory of Dissolved Iron in the Sargasso Sea: Implications for Iron Dynamics in Surface Waters of the Subtropical Ocean

    Get PDF
    Constraining the role of dust deposition in regulating the concentration of the essential micronutrient iron in surface ocean waters requires knowledge of the flux of seawater-soluble iron in aerosols and the replacement time of dissolved iron (DFe) in the euphotic zone. Here we estimate these quantities using seasonally resolved DFe data from the Bermuda Atlantic Time-series Study region and weekly-scale measurements of iron in aerosols and rain from Bermuda during 2019. In response to seasonal changes in vertical mixing, primary production and dust deposition, surface DFe concentrations vary from ∼0.2 nM in early spring to \u3e1 nM in late summer, with DFe inventories ranging from ∼30 to ∼80 μmol/m2, respectively, over the upper 200 m. Assuming the upper ocean approximates steady state for DFe on an annual basis, our aerosol and rainwater data require a mean euphotic-zone residence time of ∼0.8–1.9 years for DFe with respect to aeolian input

    Dissolved and particulate barium distributions along the US GEOTRACES North Atlantic and East Pacific zonal transects (GA03 and GP16): global implications for the marine barium cycle

    Get PDF
    Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(6), (2022): e2022GB007330, https://doi.org/10.1029/2022gb007330.Processes controlling dissolved barium (dBa) were investigated along the GEOTRACES GA03 North Atlantic and GP16 Eastern Tropical Pacific transects, which traversed similar physical and biogeochemical provinces. Dissolved Ba concentrations are lowest in surface waters (∼35–50 nmol kg−1) and increase to 70–80 and 140–150 nmol kg−1 in deep waters of the Atlantic and Pacific transects, respectively. Using water mass mixing models, we estimate conservative mixing that accounts for most of dBa variability in both transects. To examine nonconservative processes, particulate excess Ba (pBaxs) formation and dissolution rates were tracked by normalizing particulate excess 230Th activities. Th-normalized pBaxs fluxes, with barite as the likely phase, have subsurface maxima in the top 1,000 m (∼100–200 μmol m−2 year−1 average) in both basins. Barite precipitation depletes dBa within oxygen minimum zones from concentrations predicted by water mass mixing, whereas inputs from continental margins, particle dissolution in the water column, and benthic diffusive flux raise dBa above predications. Average pBaxs burial efficiencies along GA03 and GP16 are ∼37% and 17%–100%, respectively, and do not seem to be predicated on barite saturation indices in the overlying water column. Using published values, we reevaluate the global freshwater dBa river input as 6.6 ± 3.9 Gmol year−1. Estuarine mixing processes may add another 3–13 Gmol year−1. Dissolved Ba inputs from broad shallow continental margins, previously unaccounted for in global marine summaries, are substantial (∼17 Gmol year−1), exceeding terrestrial freshwater inputs. Revising river and shelf dBa inputs may help bring the marine Ba isotope budget more into balance.The International GEOTRACES Programme is possible in part thanks to the support from the U.S. National Science Foundation (Grant OCE-1840868) to the Scientific Committee on Oceanic Research (SCOR). This research was supported by the National Science Foundation under Grant No. NSF OCE-0927951, NSF OCE-1137851, NSF OCE-1261214, and NSF OCE-1925503 to A. M. Shiller; NSF OCE-1829563 to R. F. Anderson; NSF OCE-0927064 and NSF OCE-1233688 to R. F. Anderson and M. Q. Fleisher; NSF OCE-0927754 to R. Lawrence Edwards; NSF OCE-1233903 to R. Lawrence Edwards and H. Cheng; NSF OCE-0926860 to L. F. Robinson; NSF OCE-0963026 and NSF OCE-1518110 to P. J. Lam; and NSF OCE-1232814 to B. S. Twining

    Authigenic Iron Is a Significant Component of Oceanic Labile Particulate Iron Inventories

    Get PDF
    Particulate phases transport trace metals (TM) and thereby exert a major control on TM distribution in the ocean. Particulate TMs can be classified by their origin as lithogenic (crustal material), biogenic (cellular), or authigenic (formed in situ), but distinguishing these fractions analytically in field samples is a challenge often addressed using operational definitions and assumptions. These different phases require accurate characterization because they have distinct roles in the biogeochemical iron cycle. Particles collected from the upper 2,000 m of the northwest subtropical Atlantic Ocean over four seasonal cruises throughout 2019 were digested with a chemical leach to operationally distinguish labile particulate material from refractory lithogenics. Direct measurements of cellular iron (Fe) were used to calculate the biogenic contribution to the labile Fe fraction, and any remaining labile material was defined as authigenic. Total particulate Fe (PFe) inventories varied \u3c15% between seasons despite strong seasonality in dust inputs. Across seasons, the total PFe inventory (±1SD) was composed of 73 ± 13% lithogenic, 18 ± 7% authigenic, and 10 ± 8% biogenic Fe above the deep chlorophyll maximum (DCM), and 69 ± 8% lithogenic, 30 ± 8% authigenic, and 1.1 ± 0.5% biogenic Fe below the DCM. Data from three other ocean regions further reveal the importance of the authigenic fraction across broad productivity and Fe gradients, comprising ca. 20%-27% of total PFe

    Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest

    Get PDF
    International audienceBiogenic aerosol formation is likely to contribute significantly to the global aerosol load. In recent years, new-particle formation has been observed in various ecosystems around the world but hardly any measurements have taken place in the terrestrial Southern Hemisphere. Here, we report the first results of atmospheric ion and charged particle concentrations as well as of new-particle formation in a Eucalypt forest in Tumbarumba, South-East Australia, from July 2005 to October 2006. The measurements were carried out with an Air Ion Spectrometer (AIS) with a size range from 0.34 to 40 nm. The Eucalypt forest was a very strong source of new aerosol particles. Daytime aerosol formation took place on 52% of days with acceptable data, which is 2?3 times as often as in the Nordic boreal zone. Average growth rates for negative/positive 1.5?3 nm particles during these formation events were 2.89/2.68 nmh?1, respectively; for 3-7 nm particles 4.26/4.03, and for 7?20 nm particles 8.90/7.58 nmh?1, respectively. The growth rates for large ions were highest when the air was coming from the native forest which suggests that the Eucalypts were a strong source of condensable vapours. Average concentrations of cluster ions (0.34?1.8 nm) were 2400/1700 cm?3 for negative/positive ions, very high compared to most other measurements around the world. One reason behind these high concentrations could be the strong radon efflux from the soils around the Tumbarumba field site. Furthermore, comparison between night-time and daytime concentrations supported the view that cluster ions are produced close to the surface within the boundary layer also at night but that large ions are mostly produced in daytime. Finally, a previously unreported phenomenon, nocturnal aerosol formation, appeared in 32% of the analysed nights but was clustered almost entirely within six months from summer to autumn in 2006. From January to May, nocturnal formation was 2.5 times as frequent as daytime formation. Therefore, it appears that in summer and autumn, nocturnal production was the major mechanism for aerosol formation in Tumbarumba
    • …
    corecore